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MODELING A STRIPLINE FERRITE PHASE SHIFTER
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Northrop Grumman ESSD

Baltimore, Maryland

Abstract

A model is proposed for the behavior of
transmission lines on ferrite substrates.  I believe this
is the first time a model has correctly described the
absorption below the gyromagnetic resonant
frequency corresponding to the magnetization at
saturation, or γ4πMs.  This new model should allow
accurate prediction of impedances and propagation
constants for frequencies operating close to this cutoff
frequency, permitting more accurate transmission
lines and transformers to be designed.  Comparison
with measured data from a low-temperature co-fired
(LTCC) ferrite stripline phase shifter is given.

Introduction

Microwave ferrite devices often operate with an
applied magnetic field, so that the ferrite is at or
above magnetic saturation.  That is, the domains are
fully aligned in a particular direction.  In this case,
the Polder tensor model of the ferrite gives reasonably
accurate predictions of the behavior of the device.  In
the standard approach1, the permeability of a ferrite
magnetized in the z direction is taken to be a tensor µµ
with µxx=µyy=µ, µzz=1 and µxy=-µyx=κ, where
µ=1+ωoωm/(ωo2-ω2), κ=ωωm/(ωo2-ω2), and ωo=γHint,
ωm=γ4πMs.  If the ferrite is biased just at saturation,
so that the internal field Hint=0, these reduce to µ=1
and κ=-ωm/ω.  Solution of Maxwell’s equations for
TEM propagation produces an effective permeability
µeff.  If the DC magnetization is perpendicular to the
RF magnetic field, then µeff=(µ2-κ2)/µ=1-(ωm/ω)2. If the
DC magnetization is aligned parallel to the RF
magnetic field, then µeff=1.  These formulas were used
to predict the performance of an earlier stripline phse
shifter based on the idea of re-orienting the remanent
magnetization2.

If we measure the transmission and reflection
coefficients of a microstrip or stripline on an
unmagnetized ferrite substrate, a characteristic
absorption band is found, between nearly zero
frequency and γ4πMs.  This is commonly referred to as
a “low-field” loss.  Figure 1 shows an example of this
behavior in a stripline with 4πMs=4700 gauss, and a
nominal impedance of 25 Ω (chosen to reduce
conductor loss), connected between 50 Ω source and
load impedances. Note that this data includes the
effects of impedance matching sections and bias tees

attached to each end of the transmission line.  This
accounts for some of the suckouts and high loss at the
highest frequencies.

Return Loss and Insertion Loss (10 dB/div)

Insertion Phase (45 /div), Time Delay (1 nsec/div)

Figure 1.  Measured response of 2.3” long LTCC ferrite stripline,
0.045-26.5 GHz.

Circuit Model

The insertion phase and time delay in figure 1
have a behavior similar to that of standard
waveguide: the phase velocity goes to infinity and the
group velocity goes to zero at cutoff.  Figure 2 shows a
lumped element equivalent circuit for a lossless TEM
transmission line, L and C being the inductance and
capacitance per unit length.  The characteristic
impedance Zc is equal to √(jωL/jωC)=√(L/C) or √(µeff/ε).
The propagation constant is √(jωLjωC)=
jω√(LC)=jω√(µeff ε), giving a phase velocity
vp=1/√(LC)=1/√(µeff ε), which is just c/√εr if µeff=µo.  We
also have L=Z/vp and C=1/(Z vp).

Figure 2.  Lumped element circuit model of transmission line
with Z=√(L/C).

This model can be extended to simulate a
waveguide having a cutoff frequency ωc by adding a
series capacitance (1/capacitance per unit length)
Cc=1/(ωc2 L).  Now the phase velocity becomes
vpc=1/√(L(1-(ωc/ω)2)C), which goes to infinity at cutoff,
and the group velocity becomes vgc=(1-(ωc/ω)2)/√(LC),
which goes to zero at cutoff.
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and the group velocity becomes v~c=(l-(wdco)Vd(LC),

which goes to zero at cutoff.
‘series = t

‘=’+(+’%]

Figure 3. Lumped element model with cutoff at l/2zi(LCe),

When we say the ferrite is not magnetized, we

really mean that there is no net magnetization in the
overall sample. In reality, the ferrite is made up of a
large number of small domains, each of which is fully
magnetized at 47cMS. Each domain is randomly

oriented, so the net effect is ~=0. An individual
domain is subjected to the field produced by all the

domains around it, which can range from O to 4TcM,, A

magnetized domain exhibits a ferromagnetic
resonance frequency ~O=yHint. Each domain is

therefore an individual resonator at some frequency

between O and y4xM,. Now imagine a stripline in

which the substrate comprises a large number of
resonant absorbers. Since all the RF magnetic field is
contained within this volume of absorbers, the
equivalent circuit in figure 4 emerges. The series
inductance L is divided into M inductances in parallel,

each having inductance ML. Each inductance has a

series resonating capacitance @l/((Ok2 ML), where

oalkq4nM,. For simplicity, assume that the coupling

to each resonator is equal. A series resistance Rk
represents the absorption of energy in each resonator.
This is a critical feature of the analysis, and differs
from the cutoff waveguide model, which assumes a
purely reactive effect at cutoff. & can be estimated
from the Q of the resonance: Rk=cokML/Qk. Note that

this is not the resistance of the strip, which could be

modeled by adding a separate series resistance to the
model.

1

Figure 4. Model of transmission line with M resonant absorbers.

The characteristic impedance of this
transmission line is zc=d(zsefieszshunt) =~(zshunflseries),

where y.eries=~yk, and Yk=l/.&
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The domains are quite small, say 100 pm= 10-2

cm across, so any reasonably sized ferrite sample will
contain a large number of individual resonators, e.g.
M=(l cm x 1 cm x 0,1 cm)/(10-z cm)s = 105. The sum
can therefore be approximated as an integral,

‘Se’’s’’ki”r’-J&’i-(#
JO

For simplicity, assume that Qk is independent of k.

Evaluating the integral, and inverting the admittance
gives the series impedance term:

Z,e.e,:= rjom.L 4-~
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For Q~CU and CO>>W, this expression reduces

to the usual value joL. For oxti, the real part of the

argument of the log term is negative, and Zseries

becomes complex instead of pure imaginary, even if Q
is very large, This produces a high attenuation per

unit length and a complex characteristic impedance

below o~.

Figure 5 shows the variation in the
characteristic impedance and propagation constant
resulting from this model. The effective series
inductance drops as the frequency approaches mm

from above. Another way of looking at this is that the
effective permeability drops to zero at co~, and

becomes complex below %, The long-dash curve is

the propagation constant for a nonmagnetic substrate

with the same dielectric constant.

If this type of transmission line is connected
between source and load impedances Z,=Z1=50 $2, with

Zno~=25 K2,we predict the response shown in figure 6,

assuming Q=157. (We will see later that the results
are not particularly sensitive

reasonable value is assumed.)
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Figure 5.  Normalized transmission line characteristic
impedance and propagation constant  in ferrite-filled stripline.

The calculated results agree with experiment in
these key respects:
1. high attenuation at ω<ωm

2. peaking of time delay just above ωm

3. strong ripple in the passband above ωm

4. smooth return loss in absorption band
5. gradual increase in return loss as frequency goes
below ωm

6. abrupt decrease in return loss as frequency
approaches zero

High attenuation is seen below ωm because of
the band of resonant absorbers.  Peaking of the time
delay is due to the decrease in group velocity, or
equivalently, the increase in phase velocity, as the
frequency approaches ωm from above.  The ripple in
the passband is due to impedance mismatch between
the source and load impedances and the lower-than-
normal transmission line impedance.  The smooth
return loss in the absorption band is due to high
absorption in the ferrite which attenuates any load
mismatch.  The return loss improves as we move
lower in frequency because the real part of the
impedance rises toward the nominal value.  The
return loss drops abruptly at the lowest frequency
because the impedance becomes quite large there.

Figure 7 shows the effect of varying the
assumed value of Q.  The insertion loss below ωm is so
high that the input impedance is essentially equal to
Zc, regardless of the termination impedance.  Zc

appears to be relatively independent of Q.  An
estimate of the Q is ω/Kγ∆H, where K is a coupling
coefficient.  The effect of changing the value of Q may
be thought of in terms of varying either the ferrite Q
(~1/linewidth), or the coupling between the strip and
the resonators.  The absorption band persists in the
measured response in both RESET and SET states.
Above ωm, the insertion loss decreases with higher Q
because the resistances Rk are lower.
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Figure 6. Calculated return loss Lr, insertion loss Lins, insertion phase Φ, and group delay τ = -dΦ/dω in 2.3” long ferrite-filled stripline.
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Figure 7.  Calculated response for different values of Q.
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Phase Shift

For transmission phase calculations above w~,

we can use a simplified version of the integral in Zser.

In the limit of Q-=, and for coxo~, the expression for

the effective permeability simplifies to

Wsin@ = 2 (Oknio)l In((co + Old (0 - fore))

This expression is in close numerical agreement with
Schlomann’s expressions for coxo~:

The experimental data show that in the

remanent state, the absorption band is always

present, and the cutoff frequency is nearly constant,
regardless of the orientation of the magnetization. In
the LTCC stripline phase shifter, the RESET
condition is obtained by pulsing a current through the
center conductor, latching the DC magnetization
essentially parallel to the RF magnetic field. This
gives very little coupling between the RF and the
ferrite, so the effective permeability is just ~sirup]e. The

SET condition is obtained by pulsing a current
through a coil around the ferrite. This orients all the

domains more or less parallel to the center conductor,
or perpendicular to the RF magnetic field. The degree

of alignment corresponds to the remanent value of Br.

This results in strong coupling not just to individual
domains, but to the entire sample of ferrite, which
now has a more or less uniform precession resonance
at co=yH=yB,. Since this is a single resonance, it is

plausible that the permeability is decreased by
(7BJ03)Z, just as the cutoff frequency in waveguide

reduces the propagation constant by (o@)Z. The

following function is plotted in figure 8:

peflket) = PsimPle- (@r/o)z. Notice that the cutoff

frequency does not move significantly until B, exceeds

about 0.7 41cMS. Figure 9 shows good agreement

between the calculated and measured phase shift

versus B, for experimental devices having Br values

between 1500 and 2650 gauss using the formula

A@(f) = 360° f ~a { ~PSimpl.- ~[~simple - (@r/@)’] } 1c.

Although this is formally somewhat different from an
expression given by Green and Sandyd, the numerical
results are quite similar.

CONCLUSIONS

An expression for an effective permeability has
been derived which predicts the impedance and

propagation constant for striplines on ferrite

2/27197 p4

substrates having a remanent magnetization. Phase
shift can be accurately predicted as a function of
frequency and magnetic properties of the substrate.

Substantially more phase shift was found in an LTCC

stripline phase shifter than was expected from earlier

published work,
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Figure 8. Vm vs frequency for several values of B,.
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Figure 9. Predicted and measured phase shift per unit length as a function

of remanent magnetization B,. with 4rcM,=4700 gauss.
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APPENDIX

Schloemann’sA1 expression for the permeability
of a demagnetized  substrate is

µ Schl( )f .1
3

1 .2 1
f s
f

2

.  This gives about the same

results as my formula above γ4πMs, but does not give
the correct insertion phase in the absorption band. In
fact, it predicts a phase slope -dφ/dω<0, which implies
negative group velocity.  The formulas are compared
in figure A1.
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The formula given here for the longitudinally
magnetized state is somewhat reminiscent of the off-
diagonal (κ) portion of an expression proposed by
Green, et alA2 for the tensor permeability elements in
the remanent state:

µ µ dem .1 µ dem
B r
..4 π M s

3

2

      

κ
.γ B r

ω

No physical basis was claimed for this expresssion.
The figure below compares the µs developed here with
Green’s effective permeability

µ eff
µ
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